Scolytodes Ferrari (Coleoptera, Scolytinae) from Ecuador: 40 new species

Sampling event
Latest version published by University of Bergen on Aug 12, 2020 University of Bergen
Publication date:
12 August 2020
Published by:
University of Bergen
License:
CC-BY 4.0

Download the latest version of this resource data as a Darwin Core Archive (DwC-A) or the resource metadata as EML or RTF:

Data as a DwC-A file download 51 records in English (13 KB) - Update frequency: unknown
Metadata as an EML file download in English (12 KB)
Metadata as an RTF file download in English (12 KB)

Description

The genus Scolytodes Ferrari is a highly diverse group of Neotropical bark beetles. Recent collecting by hand and canopy fogging in Ecuador produced many new records. Overlap in species composition between samples from the canopy and the ground was very low, and canopy fogging revealed the highest proportion of undescribed species.

Altogether we report records for 55 species of Scolytodes from Ecuador, including 40 species new to science: Scolytodes pseudoatratus Jordal and Smith, sp. nov., Scolytodes latipes Jordal and Smith, sp. nov., Scolytodes sloanae Jordal and Smith, sp. nov., Scolytodes samamae Jordal and Smith, sp. nov., Scolytodes otongae Jordal and Smith, sp. nov., Scolytodes chaplini Jordal and Smith, sp. nov., Scolytodes projectus Jordal and Smith, sp. nov., Scolytodes lubricus Jordal and Smith, sp. nov., Scolytodes inordinatus Jordal and Smith, sp. nov., Scolytodes cancellatus Jordal and Smith, sp. nov., Scolytodes jubatus Jordal and Smith, sp. nov., Scolytodes abbreviatus Jordal and Smith, sp. nov., Scolytodes stramineus Jordal and Smith, sp. nov., Scolytodes teres Jordal and Smith, sp. nov., Scolytodes animus Jordal and Smith, sp. nov., Scolytodes pseudoanimus Jordal and Smith, sp. nov., Scolytodes bombycinus Jordal and Smith, sp. nov., Scolytodes bisetosus Jordal and Smith, sp. nov., Scolytodes horridus Jordal and Smith, sp. nov., Scolytodes virgatus Jordal and Smith, sp. nov., Scolytodes criniger Jordal and Smith, sp. nov., Scolytodes pseudocrassus Jordal and Smith, sp. nov., Scolytodes semicrassus Jordal and Smith, sp. nov., Scolytodes pseudolepidus Jordal and Smith, sp. nov., Scolytodes semilepidus Jordal and Smith, sp. nov., Scolytodes fortis Jordal and Smith, sp. nov., Scolytodes peniculus Jordal and Smith, sp. nov., Scolytodes tristis Jordal and Smith, sp. nov., Scolytodes chrysifrons Jordal and Smith, sp. nov., Scolytodes amictus Jordal and Smith, sp. nov., Scolytodes cnesinoides Jordal and Smith, sp. nov., Scolytodes maestus Jordal and Smith, sp. nov., Scolytodes vietus Jordal and Smith, sp. nov., Scolytodes echinus Jordal and Smith, sp. nov., Scolytodes rufifrons Jordal and Smith, sp. nov., Scolytodes arcuatus Jordal and Smith, sp. nov., Scolytodes validus Jordal and Smith, sp. nov., Scolytodes sparsus Jordal and Smith, sp. nov., Scolytodes lapillus Jordal and Smith, sp. nov., Scolytodes coronatus Jordal and Smith, sp. nov. We also provide the first description of the female and a new country record for Scolytodes grandis (Schedl, 1962) (=Scolytodes glaberrimus Wood, 1972 syn. nov.) and a redescription and new country record for Scolytodes pilifrons (Schedl, 1962). The total number of valid species is now 287. Additional new country records were established for Scolytodes acuminatus Wood, 1969, Scolytodes comosus Jordal and Kirkendall, 2019, Scolytodes costabilis Wood, 1974, Scolytodes glabrescens Wood, 1972, Scolytodes impressus Wood, 1969, Scolytodes nitidus (Eggers, 1928), Scolytodes striatus (Eggers, 1934), Scolytodes tucumani Wood, 2007, and from another Hexacolini genus, Pycnarthrum fulgidum Wood, 1977.

Data Records

The data in this sampling event resource has been published as a Darwin Core Archive (DwC-A), which is a standardized format for sharing biodiversity data as a set of one or more data tables. The core data table contains 51 records.

1 extension data tables also exist. An extension record supplies extra information about a core record. The number of records in each extension data table is illustrated below.

Event (core)
51
Occurrence 
125

This IPT archives the data and thus serves as the data repository. The data and resource metadata are available for download in the downloads section. The versions table lists other versions of the resource that have been made publicly available and allows tracking changes made to the resource over time.

Versions

The table below shows only published versions of the resource that are publicly accessible.

Rights

Researchers should respect the following rights statement:

The publisher and rights holder of this work is University of Bergen. This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF Registration

This resource has been registered with GBIF, and assigned the following GBIF UUID: 85b25e06-1f6b-48ea-8597-136b0ca5f160.  University of Bergen publishes this resource, and is itself registered in GBIF as a data publisher endorsed by GBIF Norway.

Keywords

Samplingevent; Coleoptera; 28S; canopy fogging; COI; Ecuador; EF-1α; molecular phylogeny; Scolytodes

Contacts

Bjarte Henry Jordal
  • Metadata Provider
  • Originator
  • Point Of Contact
Professor in Systematic Entomology
The Natural History Museum, University Museum of Bergen
Bergen
NO
Sarah M. Smith
  • Originator
Michigan State University: East Lansing, MI, US
Rukaya Johaadien

Taxonomic Coverage

Scolytodes

Genus Scolytodes (Bark beetles)

Sampling Methods

Trapping of beetles was primarily done using Petrov flight intercept traps, ‘Petrov FIT’, as described in Nikulina et al. (2015). Measurements were made as previously reported in Jordal (1998b). Scolytodes is here treated as masculine as originally proposed and later corroborated by Alonso-Zarazaga & Lyal (2009) and followed by Bright (2019). All feminine amended names in Wood (2007) are therefore rejected. All holotypes are either deposited in Ecuador at Museo de Zoologia, Pontificia Universidad Catolica del Ecuador, Quito or U.S. National Museum of Natural History and held in trust for Museo Ecuatoriano de Ciencias Naturales (MECN), Quito. Other material studied are deposited in the following institutions: MECN Museo Ecuatoriano de Ciencias Naturales, Quito. MSUC A.J. Cook Arthropod Research Collection, Michigan State University, East Lansing. NHMW Naturhistorisches Museum, Wien. QCAZ Museo de Zoologia, Pontificia Universidad Catolica del Ecuador, Quito (PUCE). USNM U.S. National Museum of Natural History, Washington D.C. ZMBN Zoological collections (entomology) at the University Museum of Bergen.

Study Extent Samples were provided from various field expeditions to Ecuador and by a long-term canopy fogging project executed in the primary forest in Amazon Basin in Yasuní National Park at the Tiputini Biodiversity Station and Okone Gare Station located in Orellana province. Sites were sampled twice a year during each of the rainy (May–October) and dry seasons (November–April) and are detailed in Erwin et al. (2005). At the time of Erwin’s collecting (1998 and prior), the Orellana province had not yet been separated from the Napo province and label data on these specimens give Napo as the province. Hand collecting was made in primary forests at the Tiputini Biodiversity station, Yakusinchi Reserve (El Cotopaxi province), Murucumba and Samama nature reserves (Los Ríos province), all at lower altitudes (400–800 m.a.s.l). Material was also collected in Cosanga and Yanayacu Field station in Napo province, and Otonga nature reserve in Cotopaxi province, located at high altitude (1900–2100 m.a.s.l).

Method step description:

  1. DNA was extracted from specimens collected by hand which are part of longer series. An effort was made to include major morphological groups in the genus, with a deliberate bias towards species complexes in the atratus and cecropiavorus groups (Table 1). Partial sequences were amplified for the genes Cytochrome Oxidase I (COI, 690 bp), large subunit of ribosomal DNA (28S, 754 aligned bp) and Elongation Factor 1-α (EF-1α, 588 bp), using primers listed in Jordal et al. (Jordal et al. 2011). Separate Bayesian analyses of each gene, and combined data, were made in MrBayes 3.2.7 (Ronquist et al. 2012). Analyses were run for 10 million generations, with 5 million generations removed as burn in, after assessment of likelihood stationarity in Tracer (Rambaut et al. 2014). Data were also analysed by maximum likelihood (ML) in PAUP* (Swofford 2002). Evolutionary models selected were GTR+G+I for all three partitions, including 28S, COI first and second positions combined (due to limited variation in second position), and COI third position.