Zooplankton community composition in Svartnes, Balsfjord, Norway in June 2017 and June 2018 (sampled with a WP-2)

Sampling event
Latest version published by UiT The Arctic University of Norway on Jul 18, 2023 UiT The Arctic University of Norway
Publication date:
18 July 2023
CC-BY-NC 4.0

Download the latest version of this resource data as a Darwin Core Archive (DwC-A) or the resource metadata as EML or RTF:

Data as a DwC-A file download 12 records in English (14 KB) - Update frequency: unknown
Metadata as an EML file download in English (17 KB)
Metadata as an RTF file download in English (12 KB)


In the project MICROSNOW, the zooplankton community composition at station Svartnes in Balsfjorden was investigated in June 2017 and June 2018. Balsfjord is a 57 km long, narrow fjord with a shallow sill (35 m) and the bottom depth at the sampling station Svartnes is 190 m. The zooplankton was collected in vertical hauls of a WP-2 zooplankton net (mesh size 64 µm). The sampling was done in sets, consisting of deep haul (170 - 50 m) and shallow haul (50 m - surface). In 2017, 5 sets of zooplankton hauls were done (two sets on 20 June 2017, three sets on 21 June 2017) to investigate potential changes of the community composition throughout the day. In 2018, only one set (deep + shallow haul) was collected (12 June 2018). Under the projectID "Microsnow_2017_2018_Balsfjord" in GBIF also an additional data set on Microsetella norvegica (developmental stage composition from samples collected with a 30 L GoFlow bottle) is available.

Data Records

The data in this sampling event resource has been published as a Darwin Core Archive (DwC-A), which is a standardized format for sharing biodiversity data as a set of one or more data tables. The core data table contains 12 records.

1 extension data tables also exist. An extension record supplies extra information about a core record. The number of records in each extension data table is illustrated below.

Event (core)

This IPT archives the data and thus serves as the data repository. The data and resource metadata are available for download in the downloads section. The versions table lists other versions of the resource that have been made publicly available and allows tracking changes made to the resource over time.


The table below shows only published versions of the resource that are publicly accessible.

How to cite

Researchers should cite this work as follows:

Svensen C (2023). Zooplankton community composition in Svartnes, Balsfjord, Norway in June 2017 and June 2018 (sampled with a WP-2). Version 1.6. UiT The Arctic University of Norway. Samplingevent dataset. https://ipt.gbif.no/resource?r=microsnow2017_2018_zooplanktoncommunitycomposition_wp2&v=1.6


Researchers should respect the following rights statement:

The publisher and rights holder of this work is UiT The Arctic University of Norway. This work is licensed under a Creative Commons Attribution Non Commercial (CC-BY-NC 4.0) License.

GBIF Registration

This resource has been registered with GBIF, and assigned the following GBIF UUID: 6ce52028-93fe-43c4-a2cb-62d9adb7d5ba.  UiT The Arctic University of Norway publishes this resource, and is itself registered in GBIF as a data publisher endorsed by GBIF Norway.




Camilla Svensen
  • Originator
  • Point Of Contact
  • Principal Investigator
UiT The Arctic University of Norway
Ingrid Wiedmann
  • Metadata Provider
  • Processor
UiT The Arctic University of Norway
Sławomir Kwaśniewski
  • Processor
Institute of Oceanology Polish Academy of Sciences (IO PAN)
Mateusz Ormańczyk
  • Processor
Institute of Oceanology Polish Academy of Sciences (IO PAN)

Geographic Coverage

The samples were collected at station Svartnes, Balsfjorden, Northern Norway (bottom depth 190 m).

Bounding Coordinates South West [69.363, 19.117], North East [69.363, 19.117]

Temporal Coverage

Start Date / End Date 2017-06-20 / 2017-06-21
Start Date 2018-06-12

Project Data

Vertical export of organic carbon from pelagic to benthic ecosystems consists mainly of copepod faecal pellets and detrital aggregates (marine snow). However, it is estimated that 20-70 % of the aggregate-associated carbon is degraded by grazing organisms within the euphotic zone. One copepod species believed to play a vital role in particle flux reduction is Microsetella norvegica, but little is known about its ecology and biology. In the first year (2017) of MICROSNOW, we successfully completed high-resolution field-investigations focusing on the role of M. norvegica for regulating the pelagic-benthic coupling in Balsfjord. More specifically, we investigated the zooplankton community composition, aggregate distribution, hydrographical and chemical properties of the water column and vertical carbon fluxes. Experiments on M. norvegica egg hatching and respiration rates at 4 different temperatures, grazing experiments and behavioural studies were successfully completed and data are now being processed. In the second year of the project we will continue building a strong data-set by including new complementary investigations. We will also focus on dissemination of results through outreach and publication. Novelties within the project are: 1) high-resolution in situ mapping of marine snow and copepods, 2) identifying interactions between sinking particles and copepods through in situ video-observations and experiments and 3) increased knowledge on M. norvegica biology and its role for pelagic-benthic coupling. This is a timely approach in the context of the future role of coastal marine ecosystems as a sink or source for atmospheric CO2, and for building knowledge on the resources available for harvestable species.

Identifier Microsnow_2017_2018_Balsfjord
Funding Financially supported by fram center flagship “Climate Change in Fjord and Coast” grant nr. 2019147470 292018
Study Area Description Svartnes, Balsfjord, Northern Norway
Design Description Field sampling and analysis of field data in combination with experiments in the laboratory

The personnel involved in the project:

Camilla Svensen
Ingrid Wiedmann

Sampling Methods

The zooplankton community was sampled with a WP-2 type net (Hydrobios Apparatebau GmbH, Altenholz, Germany) in two depth intervals (50-0 m and 170-50 m). Five vertical profiles (at approximately 6 h intervals) were sampled in 2017 to quantify differences in vertical abundance distributions over a 24 h cycle. In 2018, one profile for abundance quantification was sampled during daytime. The net and its cod end had a mesh size of 64 µm and was used with a closing mechanism for stratified sampling. Due to the small mesh-size, the net was hauled vertically at low speed, 0.2-0.3 m s-1. On deck, the content of the cod-end was gently rinsed onto a 64 µm sieve, transferred to 100 mL PVC bottles and preserved with sodium tetraborate buffered formaldehyde in filtered seawater at 4 % final concentration.

Study Extent All samples were taken at the same station in Balsfjorden. However, samples were taken in two different years (2017 and 2018).

Method step description:

  1. Zooplankton samples were examined with an Olympus model SZX7 stereomicroscope according to the procedures described in Postel et al. (2000., Biomass and abundance, p. 83-192. In R. Harris, J. Lenz, M. Huntley, P. Wiebe and H. R. Skjoldal (eds.), ICES Zooplankton Methodology Manual. Academic Press.) and Kwasniewski et al. (2010, doi: 10.1016/j.pocean.2010.06.004).
  2. Zooplankton identification and counting was performed on sub-samples obtained from the whole sample by splitting with a box splitter. From each sample, a sub-sample of at least 500 individuals was examined. The remainder of the sample was screened in its entirety for the presence of individuals of rare species and ephemeral taxa.