說明
These data were collected by staff and students of the AB-201 course at the University Centre of Svalbard. Sites were visited along the coast of Isfjorden, Svalbard, where students collected a variety of data related to vegetation recording, plant traits and abiotic data such as soil moisture, slope aspect and so on.
資料紀錄
此資源sampling event的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 1,404 筆紀錄。
亦存在 3 筆延伸集的資料表。延伸集中的紀錄補充核心集中紀錄的額外資訊。 每個延伸集資料表中資料筆數顯示如下。
此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。
版本
以下的表格只顯示可公開存取資源的已發布版本。
權利
研究者應尊重以下權利聲明。:
此資料的發布者及權利單位為 The University Centre in Svalbard。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.
GBIF 註冊
此資源已向GBIF註冊,並指定以下之GBIF UUID: 65511097-f9a4-4dca-ba4a-c304cee313ab。 The University Centre in Svalbard 發佈此資源,並經由GBIF Norway同意向GBIF註冊成為資料發佈者。
關鍵字
bbe2ea34-8842-4a9f-9b0b-95dd3c71857f 0b4081fa-5233-4484-bc82-706976defa0e 3546cb0a-27a2-4914-85cf-1774b5c4ed19 c7b5c02c-724d-4a19-b824-98180f3900c9; Samplingevent
聯絡資訊
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 出處
- 使用者
計畫資料
無相關描述
計畫名稱 | AB-201 course data 2022 UNIS |
---|---|
辨識碼 | https://www.wikidata.org/wiki/Q119442230 |
取樣方法
At six sites around Isfjorden, Svalbard, vegetation was recorded and plant traits as well as abiotic data (e.g., soil moisture) were assessed in August 2022. Feces and disturbance by animals was recorded. Geomorphology and soil characteristics were assessed. Soil, plant and feces C/N, and soil pH and LOI were analysed in the laboratory.
研究範圍 | All data were collected from sites in western Spitsbergen, the biggest island in the Svalbard archipelago, in the beginning August 2022. Hemsedalen (05.08.22) is located by Ekmanfjorden, at N°78`38,318, E°014`30,066, and is among the warmest and driest areas of Svalbard. The valley is relatively flat with broad shorelines. The slopes in the valley have a rich vegetation cover and well-developed moss tundra in the moist areas. The bedrock is dominated by sedimentary rocks such as shale, siltstone, sandstone. Brucebyen (06.08.22) is located at N°78`38,125, E°016`44,803, next to Billefjorden and is a protected cultural environment following the Svalbard Environment Act. The area is relatively flat and characterized by cryoturbation. The flat landscape is dominated by mossy wetlands. The bedrock is made up of different marine evaporites like carbonates, as well as clastic sedimentary rocks. Colesdalen (08.08.22) is located at N°78`06,594, E°015`03,019, near the southern end of the Nordenskiöld glacier. A river runs through the valley, which is broad and relatively flat. It is characterized by its wet and mossy terrain and the bedrock is dominated by sandstone. Templet (09.08.22) is located at N°78`23,741, E°016`45,083 next to Tempelfjorden. The site is mostly covered by steep cliff sides where birds nest and provide nutrients to the ecosystem below. This creates a gradient of nutrient rich zones, where the areas closest to the cliffs generally has the most nutrients and a vibrant green color. Plots were set up 70 meters from the bird cliffs. The bedrock is rich, with a mix of limestone, dolomite and carbonates all present, as well as gypsum. Diabasodden (11.08.22) is located at the entry of Sassenfjorden, at N°78`35,581, E°016`10,162. The name derives from the volcanic rock diabase, which is found here. The vegetation is mostly moss tundra. The bedrock is made up of sedimentary rocks like shale, siltstone and sandstone. Bjørndalen (3.6.2022) is a narrow valley located in Isfjorden, 10 km south-west of Longyearbyen, surrounded by steep and rocky mountain sides (N°78`12,563, E°015`19,544). A river flows through the middle of the valley. |
---|
方法步驟描述:
- At each site, 9 plots were investigated, following a gradient in topography, from ridge, slope to bottom (3 plots at each elevation). 1. Vegetation 1.1 Vegetation recording Recording was done using the point-intercept method. Plot size was 50x50cm, with 25 interception points in equal distances. All vascular plants were identified at species level and every hit was counted, including litter (detached leaves) and dead but still attached leaves (standing dead). Nomenclature follows Svalbard Flora (Svalbard Flora, 2022). For the following categories, only one hit per point was counted: bryophytes, lichens, cryptogamic crust, dead moss, rock. In a second recording of the plots by a new student group, only cryptogam functional groups were assessed and one hit per point was counted. Bryophyte functional groups follow classification by Lett et al. (2021) and lichens were distinguished in crustose, fruticose, foliose and squamulose lichens. Additional categories were cryptogamic crust, bare ground and rocks. 1.2 Plant traits Specific leaf area was investigated in two species, Bistorta vivipara and Salix polaris (see Perez-Harguindeguy 2013). We collected five leaves per species in each plot. In the field, these leaves were placed in plastic bags, separate for each plot. All leaves were photographed on the same day as they were sampled to assure freshness of the leaf. NOTE: the foil was to ensure that all leaves were lying flat against the background, however it was too thin to keep the leaves flat and created shadows. The leaf area was calculated using ImageJ v0.5.6, following a protocol (Rookieecologist, 2016). The shadows were manually corrected using the Paintbrush Tool. We assume that for a given species the error is approximately of the same size, so we are confident to compare within a species, but the error may be of different size among species. The leaves were dried at 50 °C for a minimum of 48 hours. Plant height. The measurements were done from the top of the moss layer and to the highest point of the foliage. We did not pull the leaves or stems and only measured the distance from the ground or the top of the moss layer. For Bistorta vivipara we defined it as basal foliage height and made sure not to measure the leaf on the flowering stem, which was only present in some individuals. 2. Animals 2.7 Feces of reindeer and geese were collected within 2x2 meter plots, including the vegetation recording plot. For geese, only fresh feces were collected. For reindeer, we distinguished between summer and winter feces and intermediate feces that were between summer and winter in their shape (most likely caused by forage source). Separate clumps of reindeer feces pellets close together were counted as one event. Complete reindeer and feces samples were weighed after drying at 50 °C for at least 48 hours. 2.8 Grubbing (holes made by geese) and percentage of grubbing was counted in the 2x2m plots. 3. Abiotic data 3.1 Slope angle and aspect was measured using a handheld compass. 3.2 Soil moisture was measured with a soil moisture meter (Delta-T SM150 soil moisture kit), pre-calibrated to the ‘mineral’ setting, which was inserted vertically into the soil. We calculated soil moisture as the mean value of three points surrounding each plot (left, right, and upslope). We also measured soil moisture using Raups finger method (1969), using the categories 1 = very dry, the soil was not sticky at all; 2 = less dry, the soil was sticking to the fingers; 3 = wet, water was dripping from the soil when squeezed; 4 = very wet, water was dripping from the soil without squeezing it. 3.3 Soil (and air) temperature was measured with a thermometer (Ebro TFX 410 Core Thermometer with fixed Pt 1000 probe). The thermometer was always placed into the ground at 4 cm depth while always keeping the same angle. We calculated soil temperature as the mean value of three points surrounding each plot (left, right, and upslope). Air temperature was measured using the same device making sure the thermometer remains shaded. 4. Soil 4.1 Soil samples of 10*10 cm with a depth of 5 cm were collected from each plot at every location, except Bjørndalen. 4.2 The depth of the organic layer (OLT) of two soil samples of 10x10x5 cm was measured at each plot and calculated as mean OLT. 4.3 Loss on ignition (LOI) was measured burning the samples at 550 degrees Celsius. 4.4 pH of the soil samples was measured using a plastic bottle that was filled up with 5 g of soil. 25 ml miliQ water were added. If samples did not stay liquid, 25 ml of additional deionized water were added. A shaker table was used to homogenise the samples for one hour, after which the samples were left to settle for 30 minutes. The pH of each sample was recorded using the Thermoscientific Orion Vera Star Pro pH-metre and the ROSS Ultra pH/ATC Triode Refillable electrode. For sites with alkali soil (Brucebyen, Templet, Diabasodden) the instrument was calibrated with higher pH buffer while sites with more acidic soil (Hemsedalen and Colesdalen) were calibrated with lower pH buffers. 5. Geomorphology The geomorphological processes solifluction, cryoturbation, deflation and fluvial processes (Kemppinen et al. 2022) were observed as present/absent per plot. 6. C/N analyses C/N content was analysed with a Vario EL cube C/N analyzer (Elementar). Five leaves per species per plot were collected in the same way as SLA. The leaves were dried at 50 °C for at least 48 hours, before being ground with Tungsten beads. Soil was sieved before weighing, dried at 50 °C for at least 48 hours. Feces were dried and ground at 50 °C for at least 48 hours before analysis. References Kemppinen, J., Niittynen, P., Happonen, K., le Roux, P. C., Aalto, J., Hjort, J., Maliniemi, T., Karjalainen, O., Rautakoski, H., & Luoto, M. (2022). Geomorphological processes shape plant community traits in the Arctic. Global Ecology and Biogeography, 31, 1381– 1398. https://doi.org/10.1111/geb.13512 Lett, S., Jónsdóttir, I. S., Becker-Scarpitta, A., Christiansen, C. T., During, H., Ekelund, F., Henry, G. H. R., Lang, S. I., Michelsen, A., Rousk, K., Alatalo, J. M., Betway, K. R., Rui, S. B., Callaghan, T., Carbognani, M., Cooper, E. J., Cornelissen, J. H. C., Dorrepaal, E., Egelkraut, D., … Zuijlen, K. van. (2021). Can bryophyte groups increase functional resolution in tundra ecosystems? Arctic Science, 29(August), 1–29. https://doi.org/10.1139/as-2020-0057 Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., … Buchmann, N. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167-234. doi:10.1071/BT12225. Raup, H. M. (1969). "The relation of the vascular flora to some factors of site in the Mester Vig district, northeast Greenland." Meddelelser om Grønland 176(5): 1-80. Rookieecologist (2016). How to measure leaf area in ImageJ. Rookieecologist.wordpress. https://rookieecologist.wordpress.com/2016/11/21/how-to-measure-leaf-area-in-imagej/. Last accessed September 1, 2022. Svalbard Flora (no date). Available at: https://svalbardflora.no/ (Accessed: 9 September 2022).