AB-201 course data 2022 UNIS

Données d'échantillonnage
Dernière version Publié par The University Centre in Svalbard le juin 14, 2023 The University Centre in Svalbard
Date de publication:
14 juin 2023
Licence:
CC-BY 4.0

Téléchargez la dernière version de la ressource en tant qu'Archive Darwin Core (DwC-A), ou les métadonnées de la ressource au format EML ou RTF :

Données sous forme de fichier DwC-A (zip) télécharger 1 404 enregistrements dans Anglais (115 KB) - Fréquence de mise à jour: non planifié
Métadonnées sous forme de fichier EML télécharger dans Anglais (25 KB)
Métadonnées sous forme de fichier RTF télécharger dans Anglais (19 KB)

Description

These data were collected by staff and students of the AB-201 course at the University Centre of Svalbard. Sites were visited along the coast of Isfjorden, Svalbard, where students collected a variety of data related to vegetation recording, plant traits and abiotic data such as soil moisture, slope aspect and so on.

Enregistrements de données

Les données de cette ressource données d'échantillonnage ont été publiées sous forme d'une Archive Darwin Core (Darwin Core Archive ou DwC-A), le format standard pour partager des données de biodiversité en tant qu'ensemble d'un ou plusieurs tableurs de données. Le tableur de données du cœur de standard (core) contient 1 404 enregistrements.

3 tableurs de données d'extension existent également. Un enregistrement d'extension fournit des informations supplémentaires sur un enregistrement du cœur de standard (core). Le nombre d'enregistrements dans chaque tableur de données d'extension est illustré ci-dessous.

Event (noyau)
1404
ExtendedMeasurementOrFact 
4251
Occurrence 
3018
MaterialSample 
255

Cet IPT archive les données et sert donc de dépôt de données. Les données et métadonnées de la ressource sont disponibles pour téléchargement dans la section téléchargements. Le tableau des versions liste les autres versions de chaque ressource rendues disponibles de façon publique et permet de tracer les modifications apportées à la ressource au fil du temps.

Versions

Le tableau ci-dessous n'affiche que les versions publiées de la ressource accessibles publiquement.

Droits

Les chercheurs doivent respecter la déclaration de droits suivante:

L’éditeur et détenteur des droits de cette ressource est The University Centre in Svalbard. Ce travail est sous licence Creative Commons Attribution (CC-BY) 4.0.

Enregistrement GBIF

Cette ressource a été enregistrée sur le portail GBIF, et possède l'UUID GBIF suivante : 65511097-f9a4-4dca-ba4a-c304cee313ab.  The University Centre in Svalbard publie cette ressource, et est enregistré dans le GBIF comme éditeur de données avec l'approbation du GBIF Norway.

Mots-clé

bbe2ea34-8842-4a9f-9b0b-95dd3c71857f 0b4081fa-5233-4484-bc82-706976defa0e 3546cb0a-27a2-4914-85cf-1774b5c4ed19 c7b5c02c-724d-4a19-b824-98180f3900c9; Samplingevent

Contacts

Simone Iris Lang
  • Créateur
  • Personne De Contact
Assoc. Prof.
The University Centre in Svalbard
NO
William Robert Andrews
  • Créateur
Student
The University Centre in Svalbard
NO
Sven Albin McLeod Cahling
  • Créateur
Student
The University Center in Svalbard
NO
Rebecca Kristoffersen Donali
  • Créateur
The University Center in Svalbard
NO
Charlotte Elizabeth Dunning
  • Créateur
Student
The University Center in Svalbard
NO
Eirill Grindalen Eide
  • Créateur
Student
The University Center in Svalbard
NO
Sveinung Ekse
  • Créateur
Student
The University Centre in Svalbard
NO
Amelia Kate Evavold
  • Créateur
Student
The University Center in Svalbard
NO
Johanne Marie Frisholm
  • Créateur
Student
The University Center in Svalbard
NO
David Frøytland
  • Créateur
Student
The University Center in Svalbard
NO
Minna Kruusamäe
  • Créateur
Student
The University Center in Svalbard
NO
Eline Ohr
  • Créateur
Student
The University Center in Svalbard
NO
Erik Filip Einar Pekkari Juto
  • Créateur
Student
The University Center in Svalbard
NO
Hannah Schmidt
  • Créateur
Student
The University Center in Svalbard
NO
Kyle William Smith
  • Créateur
Student
The University Center in Svalbard
NO
Marthe Svihus
  • Créateur
Student
The University Center in Svalbard
NO
Kjetil Aukland Talhaug
  • Créateur
Student
The University Center in Svalbard
NO
Selina Tinkhauser
  • Créateur
Student
The University Center in Svalbard
NO
Paul Unterluggauer
  • Créateur
Student
The University Center in Svalbard
NO
Elina Roberta Vadze
  • Créateur
Student
The University Center in Svalbard
NO
Guro Ødegårdstuen
  • Créateur
Student
The University Center in Svalbard
NO
Maria Dance
  • Créateur
Teaching assistant
The University Center in Svalbard
NO
Sil Schuuring
  • Créateur
Teaching assistant
The University Center in Svalbard
NO
Viktorie Brožová
  • Créateur
Teaching assistant
The University Center in Svalbard
NO
Simone Lang
  • Utilisateur

Données sur le projet

Pas de description disponible

Titre AB-201 course data 2022 UNIS
Identifiant https://www.wikidata.org/wiki/Q119442230

Méthodes d'échantillonnage

At six sites around Isfjorden, Svalbard, vegetation was recorded and plant traits as well as abiotic data (e.g., soil moisture) were assessed in August 2022. Feces and disturbance by animals was recorded. Geomorphology and soil characteristics were assessed. Soil, plant and feces C/N, and soil pH and LOI were analysed in the laboratory.

Etendue de l'étude All data were collected from sites in western Spitsbergen, the biggest island in the Svalbard archipelago, in the beginning August 2022. Hemsedalen (05.08.22) is located by Ekmanfjorden, at N°78`38,318, E°014`30,066, and is among the warmest and driest areas of Svalbard. The valley is relatively flat with broad shorelines. The slopes in the valley have a rich vegetation cover and well-developed moss tundra in the moist areas. The bedrock is dominated by sedimentary rocks such as shale, siltstone, sandstone. Brucebyen (06.08.22) is located at N°78`38,125, E°016`44,803, next to Billefjorden and is a protected cultural environment following the Svalbard Environment Act. The area is relatively flat and characterized by cryoturbation. The flat landscape is dominated by mossy wetlands. The bedrock is made up of different marine evaporites like carbonates, as well as clastic sedimentary rocks. Colesdalen (08.08.22) is located at N°78`06,594, E°015`03,019, near the southern end of the Nordenskiöld glacier. A river runs through the valley, which is broad and relatively flat. It is characterized by its wet and mossy terrain and the bedrock is dominated by sandstone. Templet (09.08.22) is located at N°78`23,741, E°016`45,083 next to Tempelfjorden. The site is mostly covered by steep cliff sides where birds nest and provide nutrients to the ecosystem below. This creates a gradient of nutrient rich zones, where the areas closest to the cliffs generally has the most nutrients and a vibrant green color. Plots were set up 70 meters from the bird cliffs. The bedrock is rich, with a mix of limestone, dolomite and carbonates all present, as well as gypsum. Diabasodden (11.08.22) is located at the entry of Sassenfjorden, at N°78`35,581, E°016`10,162. The name derives from the volcanic rock diabase, which is found here. The vegetation is mostly moss tundra. The bedrock is made up of sedimentary rocks like shale, siltstone and sandstone. Bjørndalen (3.6.2022) is a narrow valley located in Isfjorden, 10 km south-west of Longyearbyen, surrounded by steep and rocky mountain sides (N°78`12,563, E°015`19,544). A river flows through the middle of the valley.

Description des étapes de la méthode:

  1. At each site, 9 plots were investigated, following a gradient in topography, from ridge, slope to bottom (3 plots at each elevation). 1. Vegetation 1.1 Vegetation recording Recording was done using the point-intercept method. Plot size was 50x50cm, with 25 interception points in equal distances. All vascular plants were identified at species level and every hit was counted, including litter (detached leaves) and dead but still attached leaves (standing dead). Nomenclature follows Svalbard Flora (Svalbard Flora, 2022). For the following categories, only one hit per point was counted: bryophytes, lichens, cryptogamic crust, dead moss, rock. In a second recording of the plots by a new student group, only cryptogam functional groups were assessed and one hit per point was counted. Bryophyte functional groups follow classification by Lett et al. (2021) and lichens were distinguished in crustose, fruticose, foliose and squamulose lichens. Additional categories were cryptogamic crust, bare ground and rocks. 1.2 Plant traits Specific leaf area was investigated in two species, Bistorta vivipara and Salix polaris (see Perez-Harguindeguy 2013). We collected five leaves per species in each plot. In the field, these leaves were placed in plastic bags, separate for each plot. All leaves were photographed on the same day as they were sampled to assure freshness of the leaf. NOTE: the foil was to ensure that all leaves were lying flat against the background, however it was too thin to keep the leaves flat and created shadows. The leaf area was calculated using ImageJ v0.5.6, following a protocol (Rookieecologist, 2016). The shadows were manually corrected using the Paintbrush Tool. We assume that for a given species the error is approximately of the same size, so we are confident to compare within a species, but the error may be of different size among species. The leaves were dried at 50 °C for a minimum of 48 hours. Plant height. The measurements were done from the top of the moss layer and to the highest point of the foliage. We did not pull the leaves or stems and only measured the distance from the ground or the top of the moss layer. For Bistorta vivipara we defined it as basal foliage height and made sure not to measure the leaf on the flowering stem, which was only present in some individuals. 2. Animals 2.7 Feces of reindeer and geese were collected within 2x2 meter plots, including the vegetation recording plot. For geese, only fresh feces were collected. For reindeer, we distinguished between summer and winter feces and intermediate feces that were between summer and winter in their shape (most likely caused by forage source). Separate clumps of reindeer feces pellets close together were counted as one event. Complete reindeer and feces samples were weighed after drying at 50 °C for at least 48 hours. 2.8 Grubbing (holes made by geese) and percentage of grubbing was counted in the 2x2m plots. 3. Abiotic data 3.1 Slope angle and aspect was measured using a handheld compass. 3.2 Soil moisture was measured with a soil moisture meter (Delta-T SM150 soil moisture kit), pre-calibrated to the ‘mineral’ setting, which was inserted vertically into the soil. We calculated soil moisture as the mean value of three points surrounding each plot (left, right, and upslope). We also measured soil moisture using Raups finger method (1969), using the categories 1 = very dry, the soil was not sticky at all; 2 = less dry, the soil was sticking to the fingers; 3 = wet, water was dripping from the soil when squeezed; 4 = very wet, water was dripping from the soil without squeezing it. 3.3 Soil (and air) temperature was measured with a thermometer (Ebro TFX 410 Core Thermometer with fixed Pt 1000 probe). The thermometer was always placed into the ground at 4 cm depth while always keeping the same angle. We calculated soil temperature as the mean value of three points surrounding each plot (left, right, and upslope). Air temperature was measured using the same device making sure the thermometer remains shaded. 4. Soil 4.1 Soil samples of 10*10 cm with a depth of 5 cm were collected from each plot at every location, except Bjørndalen. 4.2 The depth of the organic layer (OLT) of two soil samples of 10x10x5 cm was measured at each plot and calculated as mean OLT. 4.3 Loss on ignition (LOI) was measured burning the samples at 550 degrees Celsius. 4.4 pH of the soil samples was measured using a plastic bottle that was filled up with 5 g of soil. 25 ml miliQ water were added. If samples did not stay liquid, 25 ml of additional deionized water were added. A shaker table was used to homogenise the samples for one hour, after which the samples were left to settle for 30 minutes. The pH of each sample was recorded using the Thermoscientific Orion Vera Star Pro pH-metre and the ROSS Ultra pH/ATC Triode Refillable electrode. For sites with alkali soil (Brucebyen, Templet, Diabasodden) the instrument was calibrated with higher pH buffer while sites with more acidic soil (Hemsedalen and Colesdalen) were calibrated with lower pH buffers. 5. Geomorphology The geomorphological processes solifluction, cryoturbation, deflation and fluvial processes (Kemppinen et al. 2022) were observed as present/absent per plot. 6. C/N analyses C/N content was analysed with a Vario EL cube C/N analyzer (Elementar). Five leaves per species per plot were collected in the same way as SLA. The leaves were dried at 50 °C for at least 48 hours, before being ground with Tungsten beads. Soil was sieved before weighing, dried at 50 °C for at least 48 hours. Feces were dried and ground at 50 °C for at least 48 hours before analysis. References Kemppinen, J., Niittynen, P., Happonen, K., le Roux, P. C., Aalto, J., Hjort, J., Maliniemi, T., Karjalainen, O., Rautakoski, H., & Luoto, M. (2022). Geomorphological processes shape plant community traits in the Arctic. Global Ecology and Biogeography, 31, 1381– 1398. https://doi.org/10.1111/geb.13512 Lett, S., Jónsdóttir, I. S., Becker-Scarpitta, A., Christiansen, C. T., During, H., Ekelund, F., Henry, G. H. R., Lang, S. I., Michelsen, A., Rousk, K., Alatalo, J. M., Betway, K. R., Rui, S. B., Callaghan, T., Carbognani, M., Cooper, E. J., Cornelissen, J. H. C., Dorrepaal, E., Egelkraut, D., … Zuijlen, K. van. (2021). Can bryophyte groups increase functional resolution in tundra ecosystems? Arctic Science, 29(August), 1–29. https://doi.org/10.1139/as-2020-0057 Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., … Buchmann, N. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167-234. doi:10.1071/BT12225. Raup, H. M. (1969). "The relation of the vascular flora to some factors of site in the Mester Vig district, northeast Greenland." Meddelelser om Grønland 176(5): 1-80. Rookieecologist (2016). How to measure leaf area in ImageJ. Rookieecologist.wordpress. https://rookieecologist.wordpress.com/2016/11/21/how-to-measure-leaf-area-in-imagej/. Last accessed September 1, 2022. Svalbard Flora (no date). Available at: https://svalbardflora.no/ (Accessed: 9 September 2022).

Métadonnées additionnelles